Шкала температур это декан

Температурные шкалы

Немного бесполезной информации.

Все элементарное просто, но все простое не всегда элементарно. Все мы слышали про различные температурные шкалы, но не все мы знаем, что их на самом деле несколько больше, чем те три, что у всех на слуху. Итак, начнем с самым распространенных, а закончим рассолом.

Шкала Цельсия (Цельсий, Celsius, °C)

Используется в быту, но не везде (вспомним Фаренгейта). 0° — точка замерзания воды, 100° — точка кипения воды при нормальном атмосферном давлении. Придумана Андерсом Цельсием аж в 1742 году.

Шкала Фаренгейта (Фаренгейт, Fahrenheit, °F)

Используется в быту, но не везде, а в основном в Англии и США. Определение ее такое (из Википедии) — это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при нормальном атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Придумал Габриэль Фаренгейт в 1724 году.

Формула перевода в градусы Цельсия:

Шкала Кельвина (Кельвин, Kelvin, K)

В быту как-то не очень. Родилась от желания получить шкалу с абсолютным нулем (отсутствием термодинамической энергии).

Названа в честь Уильяма Томсона. Казалось бы — причем здесь Кельвин. А вот Уильям Томсон был Lord Kelvin, вот так вот.

А в 1954 году на десятой главной конференции мер и весов (Conférence Générale des Poids et Mesures, CGPM) решили, что фиксированной точкой шкалы Кельвина будет тройная точка воды (нашел старенький пост @Chemicat, ), и температура ее будет 273.16K.

Кстати, K пишется без значка градуса с 1968 года после 13 главной конференции, и градус после этой конференции стал 1/273.16 температуры тройной точки воды (ну как бы все равно тот же один градус как у Цельсия получился, только теперь научно).

Шкала Ранкина (Ранкин, Rankine, °Ra)

Шкала Делиля (Делиль, Delisle, °De)

Уже давно не используется, но была когда-то. Придумал в 1732 году Жозеф Николя Делиль. Ноль — температура кипения воды, а один градус это минус две трети градуса Цельсия (потому что температура замерзания воды по этой шкале 150°De).

Отсчет положительных значений идет в противоположном направлении таковому у Цельсия.

Вообще, это не очень удивительно — у Цельсия все тоже было сначала наоборот, но производители термометров развернули. А до Делиля руки не добрались — быстро как-то эта шкала зачахла.

Формула перевода в градусы Цельсия:

Шкала Реомюра (Реомюр, Réaumur, °Ré, °Re)

Предложил Рене Антуан Реомюр в 1730 году. Собственно точка замерзания воды — 0°Re, точка кипения воды 80°Re.

Почему 80 — потому что 80 можно было делить пополам 4 раза, и все время получать целое число. Очень было модно у французов.

Формула перевода в градусы Цельсия:

Шкала Рёмера (Рёмер, Rømer, °Rø)

Почему же все эти забавные шкалы (ну, кроме верхних трех, с натяжкой, четырех) отвалились? Потому что французы, когда изобретали метрическую систему, решили что десятки — это то, что нам надо, и приняли судьбоносное решение использовать шкалу Цельсия. Так метрическая система, в лице Цельсия, заборола всех остальных.

Дубликаты не найдены

Такую историю я слышал в школе.

Видимо он ничего не слышал о России, где люди выживают в невероятных условиях при отрицательных температурах.

0° — точка замерзания воды, 100° — точка кипения воды при нормальном атмосферном давлении. Придумана Андерсом Цельсием аж в 1742 году.

В той шкале, что Андерс Цельсий придумал, 0° ― был точкой кипения, а 100° ― тройная точка воды.

Читайте также:  При какой температуре гибнут паразиты в рыбе

То что сейчас используется ― это шкала Цельсия-Линнея от 1745-го.

Точку кипения при нормальном давлении, очевидно. Это единственное слабое место шкалы Цельсия для самостоятельной калибровки термометра: она будет зависеть от внешнего атмосферного давления. Если вблизи уровня моря погрешность из-за погодных фронтов будет ничтожной, то первичная калибровка термометра на высоте становится невозможной.

Температура кипения воды повышается на 3 градуса при спуске на каждый километр. А на высоте 5000м чайник закипит при 85 градусах Цельсия. Как-то так.

До сих пор не понимаю, почему наглосаксы не перешли на Цельсия и ед. измерения СИ

Кельвин, он же Кевин, он же Гоша, он же Жора? Этот?

Типа: «еб%%ие шакалы же есть, почему бы не быть температурным».

Вполне соответствовало первому предложению поста, кстати.

И какова же температура замерзания воды?

В каком состоянии вода находится в диапазоне между 0 ⁰C и 4 ⁰C?

Т.е. вода, «где меньше соли», замёрзнет при температуре выше 0⁰ C?

Вопрос: В каком состоянии вода находится в диапазоне между 0 ⁰C и 4 ⁰C?

Просветите меня, где в слове «вода» вы нашли слово «соли»?

При таянии вода сохраняет температуру в 4 градуса.

Не лед, а вода со льдом. На основе теплоемкости льда и воды.

Дорожный знак во время жары в Юте

Это температура воздуха, а не лимит скорости

Даже в Кельвинах проще

Высокий интеллект

Градусы

Такие разные градусы

Сколько сегодня градусов? Как часто вы задаетесь этим вопросом, особенно перед тем как выйти из дома. Температура воздуха (наряду с наличием или отсутствием осадков) стала для нас ключевым параметром текущей погоды, а термометр – привычной частью быта. Но еще несколько столетий назад люди вообще не заботились измерением температуры воздуха, а термометры встречались лишь в немногочисленных научных лабораториях (да и то с XVI века). В этом плане, термометр и телескоп практически ровесники, но сравните, как часто вы пользуетесь телескопом и термометром…И редко задумываемся о том, что термометр имеет свою весьма занимательную историю.

Отличать тепло от холода умеет большинство живых организмов, это мы не можем записать в «актив» достижений человеческого разума. Но еще в древности люди заметили, что при нагревании воздух расширяется. Используя это свойство, александрийский математик и инженер Герон еще во II веке до н.э. построил систему поднятия воды путем нагревания.

Очевидным следующим шагом было научиться измерять степень нагревания/охлаждения воздуха. И, полтысячелетия спустя, другой математик, Филон Византийский якобы сконструировал некий прибор для измерения температуры воздуха и воды. По крайней мере, об этом есть упоминания в некоторых трактатах того времени. Но ни прибор, ни его чертежи так и не найдены, равно как нет информации о попытках повторить работу Филона. Поэтому эту попытку создания термометра мы не засчитываем. Пока не будет доказано иное.

Тысячу лет с лишним подвижек к решению этой задачи (измерения температуры) не было, а затем просто понеслось. Понеслось не случайно: в позднем Средневековье естествознание переживает очередной расцвет, растут университеты, открываются научные лаборатории. И им позарез нужна приборная база. В частности, инструмент, который мог бы точно измерить, как меняется температура (воздуха, растворов и проч.). Над созданием такого инструмента работали многие и сегодня лавры создателя термометра приписывают сразу нескольким ученым.

Читайте также:  Самый точный инфракрасный термометр для измерения температуры тела

Перечислю лишь некоторых.

Итальянский физик Галилео Галилей. Сам он такой прибор не описывал, но его ученики засвидетельствовали, что в 1597 году он создал термоскоп.

Он представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой, которая помещалась в жидкость. Воздух в стеклянном шаре посредством горелки или простым растиранием ладонями нагревался, в результате чего он начинал вытеснять жидкость в стеклянной трубке, показывая тем самым степень увеличения температуры: чем тоньше была трубка, тем выше была «точность» прибора. Считается, что на эти изыскания Галилея вдохновили описания устройств Герона.

Итальянский же врач Санторио, много лет занимавшийся изучением анатомии и физиологии. Кстати, он преподавал в Падуанском университете примерно в те же годы, когда там обучался Уильям Гарвей, человек, объяснивший, как работает сердце. Для своих опытов Санторио сам придумывал и изготавливал оборудование. Так в 1626 году он построил ртутный термометр, который мог измерять температуру человеческого тела. Прибор мало напоминал современные градусники: имело форму шара и продолговатую извилистую трубку, на которой были нарисованы деления, свободный конец трубки заполняли подкрашенной жидкостью. Измерения были грубыми, но, с точки зрения медицины, главным достижением Санторио было то, что он установил: у здорового человека должна быть постоянная температура тела. Нам это кажется очевидным, но до Санторио врачи об этом не задумывались.

Были и другие претенденты. На протяжении определенного времени, усовершенствования термометров касались их формы и содержимого, но не точности. Голландец Ван-Дребель доработал термоскоп, сделав его более чувствительным и окрасил воду, что облегчило работу с ним. В Флорентийской академии научились делать термометры, не зависящие от атмосферного давления: вместо воды, термометры стали заполнять подкрашенным спиртом, а верх стеклянной трубки запаивать. Но чем больше становилось термометров, тем острее вставал вопрос их «стандартизации», появления общепринятых единиц измерения температуры.

В 1672 году немецкий физик и, по совместительству, бургомистр города Марбурга Отто фон Герике создал семиметровый прибор измерения температуры с восемью делениями, от «великого холода» до «великой жары».

Термометр Герике. Иллюстрация из книги Otto von Guericke’s Experimenta Nova Magdeburgica.

Текущую температуру на шкале указывала подвижная фигурка ангела, а в качестве начальной точки (того самого «великого холода») он взял температуру первых осенних заморозков. Проблема в том, это была величина переменная, а приборам в качестве «точки отсчета» требуется константа.

Примерно в те же годы известный физик Роберт Бойль (1627—1691) предложил принять за исходную точку температуру замерзания воды. Однако вскоре обнаружили, что для построения шкалы одной исходной точки недостаточно. Сначала, с подачи Гюйгенса в качестве второй точки стали брать температуру кипения воды. Далее Ньютон сделал еще более подробную шкалу с шестью температурными отметками: 1° – тающего льда, 2° – человеческой крови, 3° – плавления воска, 4° – кипения воды, 5° – плавления сплава свинца, висмута и олова и 6° – плавления чисто свинца.

Есть и криптоисторическая версия о том, что Фаренгейт был масоном и имел в ложе степень посвящения «32 градуса». Отсюда, дескать, и взята разница в 32 градуса между нулем на его шкале и точкой таяния льда, ставшая отправной для определения всех последующих констант.

Что там было на самом деле с масонами, история темная. Но достоверно известно, что достижения Фаренгейта были отмечены принятием в члены Лондонского королевского общества (одной из первых европейских Академий наук), а его шкала используется по сей день (главным образом в Великобритании и США). Есть относительно несложный способ перевести температуру по Фаренгейту в привычные нам градусы по Цельсию: следует от данного числа отнять предварительно 32, а затем полученный остаток помножить на 5/9. Соответственно, если требуется обратный перевод («из Цельсия в Фаренгейта»), градусы их следует помножить на 9/5 и к произведению прибавить 32.

Читайте также:  Какая зависимость существует между осадками температурами поясами атмосферного давления

Система Фаренгейта оказалась не единственной. В 1730 году французский ученый Рене Антуан Реомюр предложил свой вариант шкалы.

Некоторые дореволюционные термометры Реомюра благополучно дожили до наших дней

Реомюр построил ее в соответствии с тепловым расширением жидкости. Обнаружив, что при нагревании смесь воды со спиртом между температурами замерзания и кипения воды расширяется на 80 тысячных своего объема (современное значение — 0,084), Реомюр разделил этот интервал на 80 градусов. Термометры Реомюра были весьма распространены вплоть до начала ХХ века, пока их не вытеснили приборы, работающие по шкале Цельсия.

Свой вариант температурной шкалы шведский астроном Андреас Цельсий предложил еще в 1742 году. Он поделил расстояние между точками на 100 интервалов, цифрой 100 была отмечена точка таяния льда, а 0 — точка кипения воды. И на сегодня это самый распространенный способ измерять температуру.

А дальше произошел своеобразный повтор ситуации времен Галилея и Санторио – термометры изготавливали повсеместно, но использовали при этом самые разные шкалы, помимо упомянутых Фаренгейта, Реомюра и Цельсия был еще с десяток вариантов. Использованию в быту это сильно не мешало, другое дело в науке или на производстве (а термометры к тому времени перестали быть исключительно научным прибором). Ведь для того, чтобы воспроизвести процесс по чьим-то записям, предварительно требовалось «перевести» градусы, которыми пользовался автор в те, что были на вашем термометре. Кроме того, вскоре выяснилось, что даже тщательно проградуированные приборы с разными жидкостями показывают разную температуру. При 50° С по ртутному термометру спиртовой показывал 43 ° С, термометр с оливковым маслом – 49 ° С, а с соленой водой – 45,4 ° С.

В общем, требовалось довести процесс стандартизации до конца. И это успешно проделал другой известный физик У. Томсон (лорд Кальвин). В 1848 году он предложил измерять не температуру, а количество тепла, которое в определенном процессе, называемом циклом Карно, передается от горячего тела к холодному: оно определяется только их температурами и совершенно не зависит от нагреваемого вещества. В термодинамической, или абсолютной, шкале температур, построенной на этом принципе, единица температуры называется кальвин.С точки зрения науки шкала Кальвина была оптимальным решением. Но с позиций повседневной практики, весьма неудобной, да и воспроизвести цикл Карно вне метрологической лаборатории было затруднительно. Поэтому шкала Кельвина (доработанная в прошлом веке) востребована в основном в науке, а в остальных сферах человечество обходится шкалами Фаренгейта и Цельсия (а кое-где и шкалой Реомюра).

Ну и напоследок, еще один интересный факт из истории термометров. Внедрение их в широкую терапевтическую практику в нашей стране связано с именем знаменитого врача Сергея Петровича Боткина. Ко времени начала его работы в Императорской медико-хирургической академии уже были созданы предпосылки для перехода от эмпирической терапии к научной, с обоснованными объективными методами диагностики и лечения больных. Но именно он стал «локомотивом» этого процесса в русской медицине. В частности, методологически обосновал необходимость измерения температуры пациента, как при первичном осмотре, так и в процессе лечения.

Источник

Поделиться с друзьями
Лечение простудных заболеваний
Adblock
detector